tensorflow--神经网络--5--tf.nn.l2_normalize标准化数据
tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None)
参数说明:
- x为输入的向量;
- dim为l2范化的维数,dim取值为0或0或1;
- epsilon的范化的最小值边界;
一、按列计算
例子:
import tensorflow as tf
input_data = tf.constant([[1.0,2,3],[4.0,5,6],[7.0,8,9]])
output = tf.nn.l2_normalize(input_data, dim = 0)
with tf.Session() as sess:
print sess.run(input_data)
print sess.run(output)
结果:
[[1. 2. 3.]
[4. 5. 6.]
[7. 8. 9.]]
[[0.12309149 0.20739034 0.26726127]
[0.49236596 0.51847583 0.53452253]
[0.86164045 0.82956135 0.80178374]]
dim = 0, 为按列进行l2范化
$$ norm(1)= \sqrt{1^{2}+4^{2}+7^{2}} = \sqrt{66} \\ norm(2)= \sqrt{2^{2} +5^{2}+8^{2} }= \sqrt{93} \\ norm(3) = \sqrt{ 3^{2} + 6^{2} + 9^{2}} = \sqrt{126} $$
过程如下:
[[1./norm(1), 2./norm(2) , 3./norm(3) ]
[4./norm(1) , 5./norm(2) , 6./norm(3) ] =
[7./norm(1) , 8./norm(2) , 9./norm(3) ]]
[[0.12309149 0.20739034 0.26726127]
[0.49236596 0.51847583 0.53452253]
[0.86164045 0.82956135 0.80178374]]
二、按行计算
例子:
import tensorflow as tf
input_data = tf.constant([[1.0,2,3],[4.0,5,6],[7.0,8,9]])
output = tf.nn.l2_normalize(input_data, dim = 1)
with tf.Session() as sess:
print sess.run(input_data)
print sess.run(output)
结果:
[[1. 2. 3.]
[4. 5. 6.]
[7. 8. 9.]]
[[0.26726124 0.5345225 0.8017837 ]
[0.45584232 0.5698029 0.6837635 ]
[0.5025707 0.5743665 0.64616233]]
dim = 1, 为按行进行l2范化
$$ norm(1)= \sqrt{1^{2}+4^{2}+7^{3}} = \sqrt{14} \\ norm(2)= \sqrt{4^{2} +5^{2}+6^{2} }= \sqrt{77} \\ norm(3) = \sqrt{ 7^{2} + 8^{2} + 9^{2}} = \sqrt{194} $$
过程如下:
[[1./norm(1), 2./norm(1) , 3./norm(1) ]
[4./norm(2) , 5./norm(2) , 6./norm(2) ] =
[7./norm(3) , 8..norm(3) , 9./norm(3) ]]
[[0.12309149 0.20739034 0.26726127]
[0.49236596 0.51847583 0.53452253]
[0.86164045 0.82956135 0.80178374]]
这里是一个广告位,,感兴趣的都可以发邮件聊聊:tiehan@sina.cn
个人公众号,比较懒,很少更新,可以在上面提问题,如果回复不及时,可发邮件给我: tiehan@sina.cn
个人公众号,比较懒,很少更新,可以在上面提问题,如果回复不及时,可发邮件给我: tiehan@sina.cn